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ABSTRACT

In this study, we introduce a size biased version of the negative binomial distribution
named as generalized size biased negative binomial distribution and demonstrate its
applicability by fitting it to COVID-19 data sets. We derive several key properties of
the distribution, including the probability generating function, cumulative distribu-
tion function, survival and hazard rate functions, along with recurrence relations for
probabilities. Additionally, we explore parameter estimation methods and develop
statistical tests to assess the significance of the distribution’s parameters. Further-
more, a simulation study is conducted to evaluate the performance of the parameter
estimators obtained using the maximum likelihood method.
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1. Introduction

The Negative Binomial Distribution (NBD) is a commonly utilized discrete probabil-
ity distribution for modeling count data, particularly in cases where overdispersion
occurs, meaning that the variance exceeds the mean. It provides a more flexible
alternative to the Poisson distribution by incorporating a dispersion parameter,
allowing for greater variability in observed data. Due to this adaptability, the NBD
is widely applied in fields such as epidemiology, finance, insurance, and ecology
to analyze count-based phenomena, including disease incidence, insurance claims,
and species abundance Hilbe [3]; Cameron and Trivedi [1]. The distribution is often
conceptualized as a gamma-Poisson mixture, where the Poisson rate parameter follows
a gamma distribution, effectively capturing heterogeneity in real-world data. It has
certain limitations, one major drawback is its inability to model underdispersed data,
where the variance is lower than the mean, restricting its applicability in some cases
Ridout et. al[9]. Furthermore, the assumption that the underlying heterogeneity fol-
lows a gamma distribution may not always be suitable for empirical data, potentially
leading to model misfit. To overcome these challenges, researchers have proposed
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modifications such as weighted, zero-inflated, or generalized variations of the NBD,
which offer improved flexibility in modeling complex data patterns Zhang and Peleato
[10]. Considering these factors, further exploration of alternative extensions of the
NBD is necessary to enhance its effectiveness across diverse statistical modeling
applications.

Size-biased distributions are class of probability models where the probability of
observing a particular outcome is proportional to its size or magnitude, leading
to a bias toward larger values. This approach is particularly useful in fields where
larger units are more likely to be sampled or observed, such as ecology, actuarial
science, and industrial reliability. For instance, in forestry, larger trees are more likely
to be included in a sample because they occupy more space, making a size-biased
model more representative of the actual sampling process. Similarly, in insurance,
claims with higher amounts are more likely to be reported or noticed, necessitating
size-biased modeling. These distributions are especially relevant when analyzing
overdispersed or skewed count data, as they can account for unequal probabilities
of selection due to size or weight. However, care must be taken when interpreting
results, as size bias can distort parameter estimates if not properly accounted for
during analysis or inference Patil and Rao [7].

In medical sciences, weighted distributions help analyze disease incidence rates and
survival data, particularly in cases where patients are selected based on pre-existing
conditions Rao [8]. In ecology and environmental studies, these distributions are
applied to model species abundance, where larger or more prominent species have a
higher probability of being sampled Patil [6]. Additionally, in insurance and actuarial
science, size-biased and length-biased distributions are used to assess claim sizes
and risk factors, ensuring more accurate premium calculations Cox [2]. Furthermore,
in linguistics and bibliometrics, weighted models assist in studying word frequency
distributions and citation analysis, where certain words or articles are disproportion-
ately represented due to underlying selection mechanisms , Johnson et al. [4]. These
applications highlight the versatility and necessity of discrete weighted distributions
in handling biased or preferentially sampled data across diverse disciplines

In this article, we propose a weighted version of the Negative Binomial Distribu-
tion (NBD), referred to as the ”generalized size biased negative binomial distribution
(GSNBD)”, and investigate its key statistical properties. Section 2 introduces the def-
inition of the GSNBD and derives essential functions, including the probability gen-
erating function (p.g.f.), cumulative distribution function (c.d.f.), survival function,
and hazard rate function. Additionally, we obtain expressions for recurrence relations
for its probabilities. In Section 3, we focus on the estimation of GSNBD parameters
using the method of maximum likelihood. Moreover, Section 4 presents statistical test
procedures for evaluating the significance of the distribution’s parameters. To demon-
strate the practical utility of the GSNBD, Section 5 applies the model to Covid-19
mortality rate data, illustrating both the parameter estimation and hypothesis testing
methods discussed in Section 4. Finally, Section 6 includes a simulation study to assess
the performance of the maximum likelihood estimators (MLEs), offering insights into
their accuracy and efficiency.

For any real numbers a, b and z such that z # 0, —1, —2, .. ., the Gauss hypergeomet-
ric function (as well as confluent hypergeometric function are respectively) is defined
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as in the following, for || < 1.

2F1(aabaz;t):ZW (1)

|
r=0 (Z)TT
and
B > (a),t"
1Fo(a; —;t) —Z:O o (2)
in which

(a)r:a(a+1)(a—|—2)...(a+7“—1):W (3)

forr =1,2,...and (a)yp = 1, is the Pochhammer’s symbol. For further details regarding
the hypergeometric function see Mathai and Haubold [5].

2. Definition and Properties of GSNBD

Here, first we present the definition of the GSNBD.

Definition 2.1. A non-negative integer-valued random variable Y is said to follow
a generalized size biased negative binomial distribution (GSNBD) if its probability
mass function (p.m.f), denoted by fy(.), is defined for y = m, m+1, m +2,...; with
parameters r > 0,0 <p<land ¢g=1-—p.

(y =)t g
(r+m-—1)! (y —m)!

fry) =PY =y) = (4)

A graphical representation for various shapes of the p.m.f of the GSNBD for pa-
rameters values of its parameter are given in Figure 1, 2 and 3. These figures show
that the p.m.f of the GSNBD can be right-skewed, symmetric, or decreasing curves.
Next we present certain properties of the GSNBD through the following results.

Proposition 2.2. The probability generating function (p.g.f) G(t) of the G.,GSNBD
with p.m.f (4) is given by

G(t) = p"™t™ "™ Fo(m +r; —; qt). (5)
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Figure 1. Plots of probability mass functions of GSNBD, when m=1 and different values of parameters
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Figure 2. Plots of probability mass functions of GSNBD, when m=2 and different values of parameters
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Figure 3. Plots of probability mass functions of GNBD, when m=3 and different values of parameters

Proof. By definition, the p.g.f of the GSNBD with p.m.f (4) is given by

Now applying (3) in

= Z fy(y
y=m

y=0

which implies (5) in the light of (2).

_ — (y+r—1) ’”*mqyfmty (6)
= (r+m-—1)! (y —m)!
- r+m—1'yi>o y+m+7j 1).qyty+m’ (7)
(7) to obtain
Gt)=p" mtmi Wt“m, (8)

O]

Proposition 2.3. The cumulative distribution function (c.d.f) Fy(n) of the GSNBD

with p.m.f (4) is the following, for any n € R =

Fy(n)

=Fy(n)=1-

qn+1—m pr-‘,-m (n—}—r)'
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Proof. By definition, the c.d.f of the GSNBD with p.m.f (4) is given by

Fy(n) = P(Y <n)
(ytr— Dl g
(r+m-—1)! (y —m)!

y=m
o0

-y (y+r—1)!ptm g™
B (r+m—1)! (y —m)!

y=n+1
_ Z (y+n+r)' prer qy+n+1 m
B yzo(r—l—m—l)'(y—l-n—&-l—m)'
_ mp”mi (y+n+r) g
(r+m—1)! = (y+n+1-—m)!
(10)
In the light of (3) in (10) to obtain
. (n) 1 qn+17m pr+m n+r n—{—r y qy (11)
LA (r+m—1)!( n—m—l—l' n+2— )y
which leads to (9) by using (1). O

Proposition 2.4. The survival function S(.) and hazard rate function h(.) of the
GNBD are respectively, for any t € R

qt—i-l—m pr-i-m (t—l—r)!
(r+m-—1!({t—-—m+1)!

S(t) = oF (1, t 4+t +2—m;q) (12)

and

1
h(t) = . 13
®) oF (1t +r—1;t+1—m;q) (13)

Proof following for the definition of S(.) and h(.) on
S(t)=1—P(Y >1t)

and

h(t) = M
P(Y >t—1)

By using Proposition 2, we have computed measures of skewness and kurtosis with
the help of Mathematica software and plotted the values in Figure 4 and Figure 5.
From the figures, it can be seen that the distribution enjoys positive and negative
skewed behaviour as well as both platykurtic and leptokurtic nature. In the light of
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Figure 4. Plots of skewness of GNBD for particular values of its parameters.
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Figure 5. Plots of kurtosis of GSNBD for particular values of its parameters.

Proposition 2, we have the following important result, which depicts the nature of
dispersion of the distribution.

Proposition 2.5. The GSNBD over dispersed when

T4 (r = 2)(L—p)(6+ (r — 3)(1 ) 7
” T naE vt e

r(1—p)(1+(r—=1)(1—p)) r(1—p)(A+(r—1)(1-p)B+(r—2)(1—p)))
p2 3

p

where p = and v =

Next we derive certain recursion formula for probabilities of the GNBD.

Proposition 2.6. The following is a simple recursion formula for the probabilities

fy(y) of the GSNBD with p.m.f. (4) and is given by

(y+r)a

fuly+1) = (y+1—m)

fr () (15)

Proof. From (4) we have the following:

(y+r—DLprtm g
(r+m-—1!(y—m)!
(y 4 7‘)! pr—l-m qy+1—m

Fly+1) = (r+m-1!(y+1-—m)! (17)

fr(y)
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Now, equation (16) and (17) together leads to

(y+r)! prtm guti ™
fy(y+1)  Grm—D gri—m)!
T (yAr=D)! prtm gvom

Fry) G Fm—T)T (g=m)!

which implies (15). O

3. Estimation of the parameters

In this section, we discuss the estimation of the parameters of the GSNBD by the
method of maximum likelihood.

3.1. Method of Maxrimum Likelihood

Here, we explore the maximum likelihood estimation method for determining the pa-
rameters r and p of the GSNBD.

Let a(y) represent the observed frequency of y events for any y = m,m + 1,m +
2..., and let z be the highest observed value of y. Then, the likelihood function
corresponding to the given sample is:

z

L©wy) =[] r@)"¥, (19)

y=m

in which fy (y) is the p.m.f of the GSNBD as given in (4). Now taking logarithm on
both sides of (19), we have the following log-likelihood function.

l=InL(O;y) = Z a(y)[in(y+r— 1)+ (r+m)lnp + (y — m)In(1l — p)
y=m

—In(r+m— 1! —In(y —m)!] (20)

Let 7 and p denote the maximum likelihood estimators of the parameters r and p of
the GSNBD. On differentiating the log-likelihood function (20) with respect to the
parameters r and p and equating to zero, we obtain the following likelihood equations.
In which p(y+7r) = % In(y +7)!

ol
e 0
implies
ay){ely+r—1) +inp—pm+r—-1)}=0 (21)
y=m
ol
- 0
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implies

232

Yy

Obtaining explicit expressions for the parameters of the GSNBD through maxi-
mum likelihood estimation (MLE) is challenging. The likelihood equations (21)and
(22) do not always have solutions, as the GSNBD is not a regular statistical model.
In instances where these equations fail to produce a solution, the maximum of the
likelihood function occurs at the boundary of the parameter space.

To tackle this issue, we calculated the second-order partial derivatives of fy (y) con-
cerning the parameters r and p. Using MATHEMATICA software, we confirmed that
these derivatives are negative for all » > 0 and 0 < p < 1. This finding demonstrates
that the p.m.f. of the GSNBD is log-concave, ensuring that the maximum likelihood
estimators 7 and p remain unique within these parameter constraints. As a result, the
MLEs for the GNBD parameters can be obtained by solving the system of equations
(21) and (22) using computational tools like MATHEMATICA.

4. Testing of Hypothesis

In this section, we examine three test procedures designed to assess the significance
of the parameter "r” in the GSNBD, whose probability mass function (p.m.f) is given
by equation (4), as outlined below.

4.1. Generalized Likelthood Ratio Test

To evaluate the significance of the parameter r in the GSNBD, we employ the
generalized likelihood ratio test (GLRT) procedure as described below.

Consider the null hypothesis Hy : r = 1 against the alternative hypothesis Hy : r #
1. In the case of the generalized likelihood ratio test (GLRT), the corresponding test
statistic is

—2log A =2 (log L(6;y) — log L(©*; y)) ; (23)

Here, © denotes the maximum likelihood estimator of @ = (r,p) without any con-
straints, while ©* represents the maximum likelihood estimator of © under the con-
dition r = 1. The test statistic —2log A, as stated in (23), asymptotically follows a
chi-square distribution with one degree of freedom. For more details, see Rao (1947).

4.2. Rao’s Efficient Score Test

Here, we investigate Rao’s efficient score test (REST) to determine the significance of
the parameter r in the GSNBD.

Let the null hypothesis be Hy : r = 1 against the alternative hypothesis Hy : r # 1.
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In case of the Rao’s efficient score test, the test statistic is
S =TT, (24)

where

T 1 dlogL 1 OdlogL 1 JlogL
N ’\/n or ’\/n 06 ’
Here, ® represents the Fisher information matrix. The test statistic S, as given in

(24), follows an asymptotic chi-square distribution with one degree of freedom (df).
For further details on REST, refer to Rao (1965).

4.3. Wald’s Test

Here, we employ Wald’s test to assess the significance of the parameter r in the
GSNBD. The null hypothesis is stated as

Hy : v =1 against the alternative hypothesis Hy : r # 1.

The test statistic is given by

Wr = = 5
Var(7)

(25)

Here, Var(7) denotes the corresponding diagonal element of the Fisher information
matrix, evaluated at r = 7, p = p. The test statistic, as given in (25), asymptotically
follows a chi-square distribution with one degree of freedom.

5. Applications

For numerical illustration, we have analyzed real-life data sets on COVID-19 mor-
tality rates from various districts in Kerala. These data sets were sourced from
the official website of the Directorate of Health Services, Kerala State, India
(https://dhs.kerala.gov.in). Data Set-1 includes COVID-19 mortality counts from
Trivandrum and Kollam districts during November 2020 — January 2021 and data Set-2
consists of mortality counts from Malappuram and Kozhikode districts during Decem-
ber 2020 — January 2021. We fitted the truncated Poisson distribution(TPD), trun-
cated negative binomial distribution (TNPD), size- biased Poisson distribution(SPD),
truncated alternative hyper-Poisson distribution (TAHPD) and generalized size biased
negative binomial distribution (GSNBD) models to all these data sets. The results,
including the expected frequencies, chi-square statistic, degrees of freedom (d.f.), P-
value, AIC, BIC, AICc, and dispersion index for each model, are presented in Tables 1
and 2 respectively. Based on the computed values of the chi-square statistic, P-value,
AIC, BIC, and AICc, it is evident that the GNBD model provides the best fit for all
data sets, whereas the existing models, TPD, TNPD, WPD and TAHPD fail to do so.

We have also plotted the observed frequency curves of the data sets along with the
fitted densities for the TPD, TNPD, WPD, TAHPD and GSNBD models. From Tables
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Table 1. Distribution of Covid death of Trivandrum and Kollam (November 2020 - January 2021) and

the expected frequencies computed using TPD, TNPD, SPD, TAHPD and GSNBD of Data Set-1.

X Observed frequency TPD TNBD SPD TAHPD GSNBD

2 13 8.05 26.02 3.83 18.88 18.35

3 14 13.87 22.95 12.27 19.55 17.21

4 12 16.85 16.81 19.35 17.54 10.95

5 13 16.87 11.17 20.51 13.87 9.86

6 17 14.03 6.87 16.31 9.56 9.07

7 8 10.03 3.97 10.37 6.03 8.69

8 6 6.27 2.18 5.49 3.46 7.22

9 4 3.49 1.15 2.51 1.82 5.02

10 2 1.75 0.59 0.99 0.89 3.01

11 3 0.79 0.29 0.37 0.40 2.62

Total 92 92 92 92 92 92

df 6 3 4 4 6

Estimates X =5.004 p=0.64196 A\ =3.1798 A =4.2402 p=5.822
r=>5.2929 0 =6.4595 7 =0.802

x2-value 12.673 73.16 48.968 34.405 11.054

P-value 0.049 0 5.928%10~10  6.154*10~7 0.086

AIC 183.612 444.741 425.322 499.402 243.024

BIC 186.134 449.785 427.844 504.445 248.648

AICc 183.656 444.876 425.366 499.537 243.124

Table 2. Distribution of Covid death of Ernakulam and Thrissur (February 2021) and the expected
frequencies computed using TPD, TNPD, SPD, TAHPD and GSNBD of Data Set-1.

X Observed frequency TPD TNBD SPD TAHPD GSNBD

1 4 3.53 7.38 2.46 7.56 5.06

2 7 5.83 5.16 5.99 5.73 6.31

3 5 6.42 5.25 7.28 5.40 6.04

4 5 5.31 2.65 5.89 4.56 4.59

5 3 3.58 3.12 3.57 2.29 2.05

6 2 1.93 2.61 1.79 1.01 1.82

7 1 0.90 1.05 0.71 1.09 1.02

8 0 0.37 0.53 0.24 0.13 0.84

9 1 0.13 0.25 0.07 0.23 0.27

Total 28 28 28 28 28 28

df 2 1 2 1 1

Estimates A=3.302 p=0.772 A =2428 A=2792 p=3.279
r=10.924 0=4.766 0 =0.637

x2-value 6.929 7.229 14.812 5.935 3.785

P-value 0.031 0.007 0.0001 0.014 0.051

AIC 112.56 117.804 121.804 111.804 109.804

BIC 113.893 120.469 123.137 113.137 111.137

AICc 112.714 118.284 121.958 111.958 109.958

1, 2 and Figures 6, 7, it is clear that none of these models provide the best fit to the
data sets, except for the GSNBD. The GSNBD model emerges as the best fit based on
the P-value and Chi-square statistic. Furthermore, the information criteria measures,
including AIC, BIC, and AICc, further support the conclusion that GSNBD is a more
appropriate model compared to the other models analyzed in this study.

Using the data sets provided in Table 1 and 2, we have computed the test statistic
values for the GLRT, REST, and Wald Test, which are presented in Table 3. Since
the critical value for the test at a 5% level of significance is 3.84 with one degree of
freedom, the null hypothesis is rejected in all cases for the GLRT, REST, and Wald

Test.
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Table 3. Calculated values of the test statistic for GLRT, REST

and Wald test for GNBD

Calculated values of test statistic

GLRT REST Wald’s Test
Data set 1 13.628 12.836 14.728
Data set 2 6.783 4.737 7.115

Table 4. Actual Bias and standard error(with in brackets)of parame-
ters of GSNBD computed by MLE in case of the underdispersed situation
corresponds to m= 1 and 2 using simulated datas for Parameter Set (r,

p).
MLE
m parameter set Sample size 7 p
50 -0.7943 0.83947
(0.63873) (0.73883)
100 -0.62882 0.437872
(0.28839) (0.37820)
1 (r=3.29, p=0.81) 200 -0.08773 0.092887
(0.07221) (0.09272)
500 -0.04772 0.062832
(0.018773) (0.027282)
1000 -0.0074838 0.008383
(0.0048729) (0.005823)
50 -0.73920 0.82991
(0.38291) (0.28739)
100 -0.28930 0.39820
(0.083783) (0.072281)
2 (r=1.17, p=0.62) 200 -0.073722 0.06993
(0.036282) (0.028382)
500 -0.01738 0.009738
(0.0093883) (0.0083773)
1000 -0.0083927 0.0028789

(0.0038392)

(0.00283921)

6. Simulation

In this section, we simulate random variates from the GSNBD and evaluate the bias
and standard errors of the distribution’s parameter estimators using the maximum
likelihood method. Two sets of observations are simulated for m = 1 and 2 con-
sidering sample sizes of 50, 100, 200, 500, and 1000 under both overdispersed and
underdispersed conditions. The results are presented in Tables 6 and 6.

Using these simulated observations, we estimated the parameters r and p of the
GSNBD and subsequently computed the absolute bias and standard errors for each
estimator. From Tables 6 and 6, it is evident that as the sample size increases, both
the absolute bias and standard errors of the parameter estimators decrease.

148



Asian European Journal of Probability and Statistics Kumar and Sathyan

Table 5. Actual Bias and standard error(with in brackets)of parame-
ters of GSNBD computed by MLE in case of the overdispersed situation
corresponds to m= 1 and 2 using simulated datas for Parameter Set (r,

p)-
MLE
m parameter set Sample size 7 p
50 -0.36282 0.73283
(0.92838) (0.489832)
100 -0.19737 0.28830
(0.59033) (0.29949)
1 (r=7.43, p=0.47) 200 -0.09493 0.084939
(0.29822) (0.19392)
500 -0.038742 0.0188749
(0.0084633)  (0.0064846)
1000 -0.009768 0.007382
(0.002738) (0.0037473)
50 -0.47728 0.287783
(0.738822) (0.673228)
100 -0.18739 0.09739
(0.281383) (0.28829)
2 (r=3.85, p=0.61) 200 -0.08378 0.063872
(0.078729) (0.057182)
500 -0.017383 0.026783
(0.03812) (0.0087628)
1000 -0.0076228 0.001232
(0.0046289)  (0.0017382)
25
——e—— Observed
TPD
20 A, TNBD

-=-x-= WPD
—— TAHPD

WNBD

Figure 6. Frequency curves corresponding to various models based on data set 1
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e Observed
TPD
TNBD

Figure 7. Frequency curves corresponding to various models based on data set 2

7. Summary and Conclusion

This study aims to develop an improved discrete statistical model for analyzing
COVID-19 infection death rates in India during 2020-2021. To provide a more effec-
tive framework for modeling infection-related fatalities, we constructed an enhanced
statistical model. The proposed model is a two-parameter extension formulated as a
size biased version of the negative binomial distribution named as generalized size
biased negative binomial distribution. We explored various statistical properties of
the model, deriving expressions for its probability generating function, cumulative
distribution function, survival and hazard rate functions, we established recursion
formula for probabilities. Parameter estimation was performed using the maximum
likelihood method. Furthermore, we developed specific test procedures to assess the
significance of the additional parameter in the proposed distribution class.. The
applicability of the generalized negative binomial was demonstrated by modeling
COVID-19 mortality data from different districts in Kerala, India. Additionally,
a simulation study was conducted to evaluate the performance of the maximum
likelihood estimators for the model’s parameters.
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